Финансы. Налоги. Льготы. Налоговые вычеты. Госпошлина

Модель экономически выгодных размеров заказываемых партий. Определение оптимального размера партии где Собщ - общие затраты на транспортировку и хранение; Схран - затраты на хранение запаса; Стсп - транспортно-заготовительные расходы

Определение оптимального размера партии
Дмитрий Езепов, менеджер по закупкам компании «Мидвест» © ЛОГИСТИК&система www.logistpro.ru

Одной из самых трудных задач для любого менеджера по закупкам является подбор оптимального размера заказа. Однако реальных инструментов, облегчающих ее решение, очень мало. Конечно, есть формула Вильсона, которая в теоретической литературе преподносится в качестве такого инструмента, но на практике ее использование необходимо корректировать

Автор этой статьи, работая в нескольких крупных торговых фирмах в Минске, нигде не видел, чтобы формула Вильсона применялась на практике. Ее отсутствие в арсенале менеджеров по закупкам никак нельзя объяснить недостатком у них аналитических навыков и умений, так как современные компании уделяют большое внимание квалификации своих сотрудников.

Попробуем выяснить, почему «наиболее распространенный инструмент в управлении запасами» не выходит за рамки научных публикаций и учебников. Ниже представлена известная формула Вильсона, с помощью которой рекомендуется рассчитывать экономичный объем заказа:

где Q – объем партии закупки;

S – потребность в материалах или готовой продукции за отчетный период;

О – постоянные затраты, связанные с выполнением одного заказа;

С – затраты на хранение единицы запасов за отчетный период.

Суть данной формулы сводится к тому, чтобы рассчитать, какие должны быть размеры партий (все одинаковые), чтобы доставить заданный объем товаров (то есть общую потребность на отчетный период) в течение данного периода. При этом сумма постоянных и переменных издержек должна быть минимальной.

В решаемой задаче есть по крайней мере четыре начальных условия: 1) заданный объем, который требуется доставить до пункта назначения; 2) заданный период; 3) одинаковые размеры партий; 4) заранее утвержденный состав постоянных и переменных затрат. Такая постановка задачи имеет мало общего с реальными условиями ведения бизнеса. Емкость и динамику рынка заранее не знает никто, поэтому размеры заказываемых партий всегда будут разными. Задавать период для планирования закупок тоже нет смысла, так как коммерческие компании обычно существуют значительно дольше отчетного периода. Состав затрат также подвержен изменениям из-за влияния многих факторов.

Другими словами, условия применения формулы Вильсона в реальности просто не существуют или по крайней мере встречаются очень редко. Нужно ли коммерческим компаниям решение задачи с такими исходными условиями? Думается, что нет. Именно поэтому «распространенный инструмент» реализуется только на бумаге.

МЕНЯЕМ УСЛОВИЯ

В рыночных условиях активность продаж непостоянна, что неизбежно влияет на процесс снабжения. Поэтому как частота, так и размеры закупаемых партий никогда не совпадают с их плановыми показателями в начале отчетного периода. Если же ориентироваться исключительно на план или долгосрочный прогноз (как в формуле Вильсона), то неизбежно возникнет одна из двух ситуаций: либо переполнение склада, либо дефицит продукции. Результатом и того, и другого всегда будет уменьшение чистой прибыли. В первом случае – из-за увеличения расходов на хранение, во втором – из-за дефицита. Поэтому формула расчета оптимального размера заказа должна быть гибкой по отношению к ситуации на рынке, то есть опираться на максимально точный краткосрочный прогноз продаж.

Общие затраты на закупку и хранение запасов состоят из суммы этих же затрат для каждой закупаемой партии. Следовательно, минимизация стоимости доставки и хранения каждой партии в отдельности ведет к минимизации процесса снабжения в целом. А так как расчет объема каждой партии требует именно краткосрочного прогноза продаж (а не на весь отчетный период), то необходимое условие гибкости формулы расчета оптимального размера партии (ОРП) по отношению к ситуации на рынке выполняется. Такое условие задачи соответствует как цели коммерческой фирмы (минимизация затрат), так и реальным условиям ведения бизнеса (изменчивость конъюнктуры рынка). Определения постоянных и переменных затрат для подхода минимизации поставок с точки зрения каждой партии в отдельности приведены во врезке «Виды затрат» на стр. 28.

СОБСТВЕННО РАСЧЕТ

Если допустить, что кредит погашается по мере уменьшения стоимости запасов через плановые промежутки времени (дни, недели, месяц и др.)(1), то, используя формулу суммы членов арифметической прогрессии, можно рассчитать общую стоимость хранения одной партии запасов (плату за пользование кредитом):

где K – расходы на хранение запасов;

Q – объем партии закупки;

p – цена закупки единицы товара;

t – время нахождения запаса на складе, которое зависит от краткосрочного прогноза интенсивности продаж;

r – процентная ставка в плановую единицу времени (день, неделя и др.).

Таким образом, общие затраты на доставку и хранение партии заказа составят:

где Z – общие затраты на доставку и хранение партии.

Минимизировать абсолютную величину стоимости доставки и хранения одной партии нет смысла, так как дешевле было бы просто отказаться от закупок, поэтому следует перейти к относительному показателю затрат на единицу запаса:

где z – стоимость пополнения и хранения единицы запаса.

Если закупки осуществляются часто, то период продаж для одной партии получается небольшой, и интенсивность продаж в течение этого времени будет относительно постоянной2. Исходя из этого время нахождения запаса на складе рассчитывают как:

где – краткосрочный прогноз средних продаж за плановую единицу времени (день, неделю, месяц и др.).

Обозначение не случайно, так как в качестве прогноза обычно выступают средние продажи в прошлом с учетом различных корректировок (дефицит на складе в прошлом, наличие тенденции и др.).

Таким образом, подставляя формулу (5) в формулу (4), получим целевую функцию минимизации стоимости доставки и хранения единицы запаса:

Приравнивая первую производную к нулю:

находим (ОРП) с учетом краткосрочного прогноза продаж:

НОВАЯ ФОРМУЛА ВИЛЬСОНА

Формально с математической точки зрения формула (8) – та же формула Вильсона (числитель и знаменатель разделены на одну и ту же величину в зависимости от принятой плановой единицы времени). И если интенсивность продаж не будет меняться, скажем, в течение года, то, заменив годовой потребностью в товаре и r – годовой процентной ставкой, мы получим результат, который будет идентичен расчету ЭОЗ. Однако с функциональной точки зрения формула (8) демонстрирует совершенно иной подход к решаемой задаче. В ней учитывается оперативный прогноз продаж, что делает расчет гибким относительно ситуации на рынке. Остальные параметры формулы ОРП в случае необходимости могут оперативно корректироваться, что также является неоспоримым преимуществом перед классической формулой расчета ЭОЗ.

На политику закупок компании влияют и другие, часто более значимые факторы, чем интенсивность продаж (текущие остатки на собственном складе предприятия, минимальный размер партии, условия доставки и др.). Поэтому, несмотря на то что в предлагаемой формуле устранена основная преграда для расчета оптимального размера заказа, ее использование может быть лишь вспомогательным инструментом эффективного управления запасами.

Высокопрофессиональный менеджер по закупкам опирается на целую систему статистических показателей, в которой формула ОРП играет существенную, но далеко не решающую роль. Однако описание такой системы показателей эффективного управления запасами является отдельной темой, которую мы будем освещать уже в следующих номерах журнала

1- В реальности так не происходит, поэтому стоимость хранения запасов будет выше. 2- В реальности нужно обращать внимание не на частоту заказа, а на стабильность продаж в рамках краткосрочного периода прогноза продаж. Просто обычно, чем меньше период, тем меньше проявляется сезонность и тенденция.

объем спроса (оборота);

транспортно-заготовительные расходы;

расходы на хранение запаса.

В качестве критерия оптимальности выбирают минимум суммы расходов транспортно-заготовительных и на хранение.

Транспортно-заготовительные расходы при увеличении размера заказа уменьшаются, так как закупки и перевозки товаров осуществляются более крупными партиями и, следовательно, реже.

Расходы по хранению растут прямо пропорционально размеру заказа.

Для решения данной задачи необходимо минимизировать функцию, представляющую сумму расходов транспортно-заготовительных и на хранение, т.е. определить условия, при которых

Собщ = Схран + Странсп,

где Собщ - общие затраты на транспортировку и хранение; Схран - затраты на хранение запаса; Стсп - транспортно-заготовительные расходы.

Предположим, что за определенный период времени величина оборота составляет Q. Размер одной заказываемой партии S. Допустим, что новая партия завозится после того, как предыдущая полностью закончилась. Тогда средняя величина запаса составит S/2. Введем размер тарифа (М) за хранение товара. Он измеряется долей, которую составляют издержки по хранению за период Т в стоимости среднего запаса за тот же период.

Стоимость хранения товаров за период Т можно рассчитать по следующей формуле:

Схран = М (S/2).

Размер транспортно-заготовительных расходов за период Т определится по формуле:

Схран = K (Q/S)

где К - транспортно-заготовительные расходы, связанные с размещением и доставкой одного заказа; Q/S - количество заказов за период времени. Подставив данные в основную функцию, получим:

Со6щ = М (S/2) + K (Q/S).

Минимум Собщ имеется в точке, в которой ее первая производная по S равна нулю, а вторая производная больше нуля.

Найдем первую производную:

После того как сделан выбор системы пополнения запасов, необходимо количественно определить величину заказываемой партии, а также интервал времени, через который повторяется заказ.

Оптимальный размер партии поставляемых товаров и, соответственно, оптимальная частота завоза зависят от следующих факторов:

объем спроса (оборота);

расходы по доставке товаров;

расходы по хранению запаса.

В качестве критерия оптимальности выбирают минимум совокупных расходов по доставке и хранению.

Рис. 1.

График этой зависимости, имеющей форму гиперболы, представлен на рис.1.

И расходы по доставке и расходы по хранению зависят от размера заказа, однако характер зависимости каждой из этих статей расходов от объема заказа, разный. Расходы по доставке товаров при увеличении размера заказа очевидно уменьшаются, так как перевозки осуществляются более крупными партиями и, следовательно, реже.

График этой зависимости, имеющей форму гиперболы, представлен на рис. 2.

Расходы по хранению растут прямо пропорционально размеру заказа. Эта зависимость графически представлена на рис. 3.


Рис. 2.


Рис. 3.

Сложив оба графика, получим кривую, отражающую характер зависимости совокупных издержек по транспортировке и хранению от размера заказываемой партии (рис. 4). Как видим, кривая суммарных издержек имеет точку минимума, в которой суммарные издержки будут минимальны. Абсцисса этой точки Sопт дает значение оптимального размера заказа.


Рис. 4.

Таким образом, задача определения оптимального размера заказа, наряду с графическим методом, может быть решена и аналитически. Для этого необходимо найти уравнение суммарной кривой, продифференцировать его и приравнять вторую производную к нулю.

В результате получим формулу, известную в теории управления запасами, как формулу Уилсона, позволяющую рассчитать оптимальный размер заказа:

где Sопт - оптимальный размер заказываемой партии;

О - величина оборота;

Ст - издержки, связанные с доставкой;

Сх - издержки, связанные с хранением.

Задача определения оптимального размера заказа может быть решена графическим методом и аналитическим. Рассмотрим аналитический метод.

"Для этого необходимо минимизировать функцию, представляющую сумму транспортно-заготовительных расходов и расходов на хранение от размера заказа, т.е. определить условия, при которых:

С общ. = С хран. + трансп. Min

где, С общ. - общие затраты на транспортировку и хранение запаса;

С хран. - затраты на хранение запаса;

С трансп. - транспортно - заготовительные расходы.

Предположим, что за определенный период времени величина оборота составляет Q. Размер одной заказываемой и доставляемой партии S. Допустим, что новая партия завозится после того, как предыдущая полностью закончилась. Тогда средняя величина запаса составит S/2.

Введем размер тарифа М за хранение запаса. М измеряется долей, которую составляют издержки по хранению за период Т в стоимости среднего запаса за этот же период. Например, если М = 0,1, то это означает, что издержки по хранению запаса за период составили 10 % от стоимости среднего запаса за этот же период. Можно сказать также, что издержки по хранению единицы товара в течение периода составили 10 5 от ее стоимости.

С хран. = М х S/2

Размер транспортно-заготовительных расходов за период Т определится умножением количества заказов за этот период на величину расходов, связанных с размещением и доставкой одного заказа.

С трансп. = К х Q/S

К - транспортно-заготовительные расходы, связанные с размещением и доставкой одного заказа; Q/S - количество завозов за период времени.

Выполнив ряд преобразований, найдем оптимальный размер единовременно доставляемой партии (S опт.), при котором величина суммарных затрат на хранение и завоз будет минимальной.

С общ. = М х S/2 + К х Q/S

Далее находим значение S, обращающее производную целевой функции в ноль, откуда выводится формула, позволяющая рассчитать оптимальный размер заказа, в теории управления запасами известная как формула Уилсона.

Рассмотрим пример расчета оптимального размера заказываемой партии. В качестве исходных данных примем следующие величины. Стоимость единицы товара - 40 руб. (0,04 тыс. руб.).

Месячный оборот склада по данной товарной позиции: Q = 500 единиц/мес. или Q = 20 тыс. руб. /мес. Доля затрат на хранение товара составляет 10 % от его стоимости, т.е. М = 0,1.

Транспортно - заготовительные расходы, связанные с размещением и доставкой одного заказа: К = 0,25 тыс. руб.

Тогда оптимальный размер завозимой партии составит:

Очевидно, что товар в течение месяца целесообразно завозить дважды:

20 тыс. руб. / 10 тыс. руб. = 2 раза.

В этом случае транспортно - заготовительные расходы и расходы по хранению:

С общ. = 0,1 Ч 10/2 + 0,25 Ч 20/10 = 1 тыс. руб.

Игнорирование полученных результатов приведет к завышенным расходам.

Ошибка в определении объема заказываемой партии на 20% в нашем случае увеличит месячные расходы предприятия на транспортировку и хранение на 2%. Это соизмеримо со ставкой депозитного вклада.

Другими словами, названная ошибка равносильна недопустимому поведению финансиста, продержавшего без движения деньги в течение месяца и не давшего им "поработать" на депозитном вкладе".

Точка возобновления заказа определяется по формуле:

Тз = Рз х Тц + Зр

где, Рз - средний расход товара в расчете на единицу продолжительности заказа;

Тц - продолжительность цикла заказа (временной интервал между размещением заказа и его получением);

Зр - размер резервного (гарантийного) запаса.

Рассмотрим пример расчета точки возобновления заказа.

Предприятие закупает у поставщика хлопчатобумажную ткань. Годовой объем спроса ткани составляет 8 200 м. Принимаем, что годовой спрос равен объему закупок. На предприятии ткань расходуется равномерно, и требуется резервный запас ткани, равный 150 м. (Примем в расчете, что в году 50 недель).

Средний расход ткани на единицу продолжительности заказа составит:

Рз = 8 200 м. / 50 недель = 164 м.

Точка возобновления заказа будет равна:

Тз = 164 м. Х 1 нед. + 150 м. = 314 м.

Это означает, что когда уровень запаса ткани на складе достигает 314 м., то следует сделать очередной заказ поставщику.

Стоит отметить, что у многих предприятий есть доступная и очень важная информация, которая может быть использована при контроле ТМЗ. Группировки материальных затрат должны проводиться для всех видов ТМЗ в целях выявления среди них наиболее значимых.

В результате ранжирования по стоимости отдельных видов сырья и материалов среди них может быть выделена конкретная группа, контроль за состоянием которой имеет первоочередное значение для управления оборотными средствами предприятия. Для наиболее значимых и дорогостоящих видов сырья целесообразно определить наиболее рациональный размер заказа и задать величину резервного (страхового) запаса.

Необходимо сопоставить экономию, которую может получить предприятие за счет оптимального размера заказа, с дополнительными транспортными затратами, которые возникают при реализации этого предложения.

Например, ежедневная поставка сырья и материалов может потребовать содержания значительного парка грузовых автомашин. Транспортно-эксплуатационные издержки могут превысить экономию, которую дает оптимизация размеров запасов.

транспортировка размер заказ товар

При этом возможно создание консигнационного склада используемого сырья поблизости от предприятия.

В управлении запасами продукции на складе могут быть использованы такие же приемы, как и при управлении ТМЦ, в частности метод АВС.

При помощи представленных выше методик, а также на основе анализа запросов потребителей и производственных возможностей может быть определен наиболее рациональный график поступления готовой продукции на склад и размер страхового запаса.

Затраты на хранение, учет и другие расходы, связанные с обеспечением ритмичности поставки произведенной продукции, необходимо сопоставить с преимуществами, которые дает бесперебойное снабжение традиционных покупателей и выполнение периодических срочных заказов.

После того как сделан выбор системы пополнения запасов, необходимо количественно определить величину заказываемой партии, а также интервал времени, через который повторяется заказ.

Оптимальный размер партии поставляемых товаров и, соот­ветственно, оптимальная частота завоза зависят от следующих факторов: объем спроса, расходы по доставке товаров, расходы по хранению запаса.

В качестве критерия оптимальности выбирают минимум со­вокупных расходов по доставке и хранению.

И расходы по доставке и расходы по хранению зависят от размера заказа, однако, характер зависимости каждой из этих статей расходов от объема заказа, разный. Расходы по доставке товаров при увеличении размера заказа, очевидно, уменьшаются, так как перевозки осуществляются более крупными партиями и, следовательно, реже. График этой зависимости, имеющей форму гиперболы, представлен на рис. 60.

Расходы по хранению растут прямо пропорционально разме­ру заказа. Эта зависимость графически представлена на рис. 61.


Рис. 60. Зависимость расходов на транспортировку от размера заказа

Рис. 61. Зависимость расходов на хранение запасов от размера заказа


Рис. 62. Зависимость суммарных расходов на хранение и транспортировку от размера заказа.

Сложив оба графика, получим кривую, отражающую харак­тер зависимости совокупных издержек по транспортировке и хранению от размера заказываемой партии (рис. 62). Как видим, кривая суммарных издержек имеет точку минимума, в которой суммарные издержки будут минимальны.

Задача определения оптимального размера заказа, наряду с графическим методом, может быть решена и аналитически. Для этого используется формула Уилсона.

ЛЕКЦИЯ 11. СКЛАДЫ В ЛОГИСТИКЕ

Понятие и виды складов

Функции складов

Краткая характеристика складских операций

Грузовая единица

Понятие и виды складов

Склады - это здания, сооружения и разнообразные устройства, предназначенные для приемки, размещения и хране­ния поступивших на них товаров, подготовки их к потреблению и отпуску потребителю.



Склады являются одним из важнейших элементов логи­стических систем. Объективная необходимость в специально обустроенных местах для содержания запасов существует на всех стадиях движения материального потока, начиная от первичного источника сырья и кончая конечным потребителем. Этим объясняется наличие большого количества, разнообразных видов складов:

ü По размерам склады варьируются от не­больших помещений общей площадью в несколько сотен ква­дратных метров до складов-гигантов, покрывающих площади в сотни тысяч квадратных метров.

ü Различаются склады и по высоте укладки грузов. В одних груз хранится не выше человеческого роста, в других необходимы специальные устройства, способные поднять и точно уло­жить груз в ячейку на высоте 24 м и более.

ü Склады могут иметь разные конструкции: размещаться в отдельных помещениях (закрытые), иметь только крышу или крышу и одну, две или три стены (полузакрытые). Некоторые грузы хранятся вообще вне помещений на специально оборудованных площадках, в так называемых открытых складах.

ü В складе может создаваться и поддерживаться специальный режим, например, температура, влажность.

ü Склад может предназначаться для хранения товаров одно­го предприятия (склад индивидуального пользования), а может, на условиях лизинга, сдаваться в аренду физическим или юри­дическим лицам (склад коллективного пользования или склад-отель).

ü Различаются склады и по степени механизации складских операций: немеханизированные, механизированные, комплексно-механизированные, автоматизированные и автоматические.

ü Существенным признаком склада является возможность до­ставки и вывоза груза с помощью железнодорожного или вод­ного транспорта. В соответствии с этим признаком различают пристанционные или портовые склады (расположенные на тер­ритории железнодорожной станции или порта), прирельсовые (имеющие подведенную железнодорожную ветку для подачи и уборки вагонов) и глубинные. Для того, чтобы доставить груз от станции, пристани или порта в глубинный склад, необходимо воспользоваться автомобильным или другим видом транспорта.

ü В зависимости от широты ассортимента хранимого груза вы­деляют специализированные склады, склады со смешанным или с универсальным ассортиментом.

ü Склады можно разделить на две группы: склады на участке движения продукции производственно-технического назначения и склады на участке движения товаров народного потребле­ния .

Рис. 64. Принципиальная схема цепи складов на пути материального потока от первичного источника сырья до конечного потребителя

Принципиальная схема прохождения материального пото­ка через цепь складов различных предприятий приведена на рис. 64.

После того как сделан выбор системы пополнения запасов, необходимо количественно определить величину заказываемой партии, а также интервал времени, через который повторяется заказ.

Оптимальный размер партии поставляемых товаров и, соот­ветственно, оптимальная частота завоза зависят от следующих факторов:

объем спроса (оборота);

расходы по доставке товаров;

расходы по хранению запаса.

В качестве критерия оптимальности выбирают минимум совокупных расходов по доставке и хранению.

Рис. 59. Двухбункерная система контроля за состоянием запасов

И расходы по доставке и расходы по хранению зависят от размера заказа, однако характер зависимости каждой из этих статей расходов от объема заказа, разный. Расходы по доставке товаров при увеличении размера заказа очевидно уменьшаются, так как перевозки осуществляются более крупными партиями и, следовательно, реже. График этой зависимости, имеющей форму гиперболы, представлен на рис. 60.

Расходы по хранению растут прямо пропорционально разме­ру заказа. Эта зависимость графически представлена на рис. 61.

Рис. 60. Зависимость расходов на транспортировку от размера заказа

Рис. 61. Зависимость расходов на хранение запасов от размера заказа

Сложив оба графика, получим кривую, отражающую харак­тер зависимости совокупных издержек по транспортировке и хранению от размера заказываемой партии (рис. 62). Как видим, кривая суммарных издержек имеет точку минимума, в которой суммарные издержки будут минимальны. Абсцисса этой точки S опт дает значение оптимального размера заказа.

Рис. 62. Зависимость суммарных расходов на хранение и транспортировку от размера закаэа. Оптимальный размер заказа S опт

Задача определения оптимального размера заказа, наряду с графическим методом, может быть решена и аналитически. Для этого необходимо найти уравнение суммарной кривой, продиф­ференцировать его и приравнять вторую производную к нулю. В результате получим формулу, известную в теории управле­ния запасами, как формулу Уилсона, позволяющую рассчитать оптимальный размер заказа:


где Sопт - оптимальный размер заказываемой партии;

О - величина оборота;

Ст- издержки, связанные с доставкой;

Сх- издержки, связанные с хранением.

Вопросы для контроля знаний

1. Дайте определение понятию «материальный запас».

2. Перечислите расходы, связанные с необходимостью содержа­ния материальных запасов.

3. Назовите основные причины, которые вынуждают предпринимателей создавать материальные запасы.

4. Перечислите известные Вам виды материальных запасов.

Данная статья не претендует на то, чтобы дать всеобъемлющий ответ на вопрос об оптимальных размерах производственных партий, ее цель — собрать в одно месте некоторые аспекты одно из проблем планирования сложного производства.

Начнем с определения

Вообще, чтобы действительно правильно начать ответ, нужно дать определение производственной партии. И одна только эта попытка может вызвать к жизни несколько крестовых походов и священных войн между адептами того или иного подхода. По крайней мере, в те годы, когда я работал консультантом в консалтинговой компании, мы долго ломали копья по поводу этого определения, пока один из мудрых коллег не предложил 5 вариантов, которые бы более-менее закрыли всё множество вариаций производственных партий.

Партия — это:

  1. Размер заказа клиента – внешнего, или внутреннего (между операциями)
  2. Технологическая партия – одновременно обрабатываемое количество продукции
  3. Количество продукции, выпускаемое между переналадками
  4. Количество продукции, выпускаемой между транспортировками
  5. Объем накопителя или бункера, единовременно загружаемый перед операцией

В общем случае следует говорить о том, что производственная партия — это то количество деталей, изделий, продукции, которое обрабатывается на одном этапе производства без перерывов, остановок и переключения на другой тип деталей, изделий, продукции. Не могу сказать, что это лучшее определение партии, которое можно дать, но для целей этой статьи, думаю, его будет достаточно.

Экономически оптимальный размер партии на одной операции

Для каждого отдельного этапа производства можно достаточно достоверно определить экономически оптимальный размер партии, для чего используют формулу Уилсона

где EOQ - экономичный размер заказа (economic order quantity – EOQ)),
Q - количество товара в год (Quantity in annual units),
P - затраты на реализацию заказа (Placing an order cost),
C - затраты на складирование единицы товара в год (Carry costs)

или ее аналог формулу Андлера

где у min - оптимальный размер партии,
V - требуемый объем продукции за период времени (скорость сбыта),
C r - затраты, связанные со сменой партий (условно - на наладку),
C l - удельные расходы на складирование в периоде времени.

Общий вид графика таков:

Собственно, тут надо искать минимум кривой «Общие затраты», а значение Х, которое ему соответствует, и будет представлять собой «экономически оптимальный размер партии».

Естественно, это всё выглядит просто только на графике, чтобы посчитать точное значение, нужно хорошо понимать затраты на наладку (зеленая кривая) и величину складских затрат (сиреневая кривая).

В затраты на наладку могут попадать:

  • стоимость простоя оборудования
  • стоимость простоя операторов
  • затраты на наладчиков
  • затраты на инструмент
  • затраты на оснастку
  • дополнительные затраты материалов и энергоносителей на время останова/пуска
  • и т.д.

В величину складских затрат попадают:

  • стоимость хранимых объектов
  • стоимость складских площадей
  • затраты на складской персонал
  • затраты на освещение и отопление
  • затраты на складскую технику (штабелеры / погрузчики)
  • и т.д.

В общем, достаточно много чего нужно учесть.

Кривая общих затрат не имеет излома в токе минимума, а это означает, что если вы получили, к примеру, экономически оптимальный размер партии в 1327 штук, то, скорее всего, вы можете запускать производство партиями от 1300 до 1400 штук без каких-либо существенных отклонений в себестоимости, ну и уж точно если оптимальный размер партии — 4,6 штуки, то можно запускать партии и по 4 штуки и по 5 штук.

Проблема: разные технологии — разные партии

Проблема реального производства заключается в том, что затраты на наладку и складские затраты неодинаковы на всём производственном цикле, и это вносит разногласия в то, каким должен быть размер партии, которая проходит несколько стадий производства, а не только одну.

Например, сырье выгодно привозить фурами, т.к. стоимость транспортного средства «размазывается» на весь объем сырья, сколько бы его ни было, термообработку нужно выполнять для такого количества деталей, которые максимально можно засунуть в печь, а отгрузку нужно делать только в том количестве, которое заказал конкретный заказчик, иначе всё лишнее, что вы ему отправите, просто достанется ему даром.

Хранить мелкие и объемные объекты тоже стоит разные деньги, а если какое-то сырье нужно еще и держать в тепле или других «особых климатических условиях», то стоимость хранения такого сырья будет выше, чем для других видов сырья.

  1. 2000 штук в партии
  2. 200 штук в партии
  3. 540 штук в партии
  4. 34 штуки в партии

И хорошо еще, если единицы измерений в каждом случае одинаковые. А то ведь может получиться и так:

  1. 2000 кг в партии
  2. 200 штук в партии
  3. 540 пар в партии
  4. 34 комплекта в партии

В этом случае проблема оптимального размера партии только усугубляется.

Крайние варианты решения проблемы

Чтобы не путаться хочется иметь один размер партии на все случаи жизни. Ведь если на одном этапе производства партия состоит из десяти штук, а на другом из тринадцати, нужно организовывать какой-то промежуточный склад для того, чтобы накапливать недостающие штуки полуфабрикатов.

Какие же могут быть крайние варианты?

  1. использовать максимальный из расчетных размеров партий
  2. использовать минимальный из расчетных размеров партий

Возьмем пример со штуками, описанный выше (2000, 200, 530 и 34 штуки) и посмотрим, как на нем реализовать оба варианта.

Максимальный размер партии

Максимальный размер партии из всех четырех вариантов — 2000 штук. Согласившись на его использование мы приходим к планированию производства, в котором используются только партии объемом 2000 штук:

  1. 2000 штук в партии
  2. 2000 штук в партии
  3. 2000 штук в партии
  4. 2000 штук в партии

Что при этом получается?

На первом этапе мы получаем оптимальный размер партии — ни больше, ни меньше. И те, кто работают на этом участке, а тем более те, кто им управляет, должны быть абсолютно довольны таким решением.

На втором этапе размер партии в 10 раз превышает оптимальный. Что это означает? Мы тратим в 10 раз меньше времени на переналадку этого этапа производства, но при этом заполняем промежуточный склад между 2 и 3 этапами большим объемом запасов, которые вдесятеро превышают то, что могло бы устроить наших менеджеров.

На третьем этапе размер партии больше оптимального почти в 4 раза, и это тоже может приводить к большому количеству запасов.

Но вот где запасов точно ОЧЕНЬ МНОГО — это после четвертого этапа. Там-то можно работать по 34 штуки, а это означает, что размер партии практически в 60 раз больше оптимального.

Чем хорошо и чем плохо такое решение.

Хороший результат заключается в том, что оборудование будет загружено по полной программе, простои на переналадку будут сведены к минимуму, и если мы сможем синхронизировать переналадку оборудования и пропускать по одной партии через все этапы по порядку, то нам нужно будет только три промежуточных склада на 2000 штук полуфабрикатов (между первым и вторым этапами, между вторым и третьим этапами, между третьим и четвертым этапами) и тогда весь процесс будет работать как конвейер. Если какой-то из этапов остановится, то ограничение в размер промежуточного склада в 2000 штук быстро вынудит остановить всё производство и перепроизводства не произойдет: последующие этапы исчерпают свои запасы полуфабрикатов и остановятся, т.к. аварийный этап не позволит их пополнять, а предыдущие этапы заполнят промежуточные склады и тоже остановятся, т.к. аварийный этап не позволит их освобождать).

Плохой результат в том, что вам скорее всего понадобится очень много складских площадей для организации трех промежуточных складов: чаще всего производство организуют так. что пока все 2000 полуфабрикатов не появятся на предшествующем складе, следующий этап производства не запускается, а это означает, что под эти полуфабрикаты нужно иметь соответствующее пространство (в отдельных случаях можно работать «с колес», т.е. запускать производство на следующем этапе еще до того, как вся партия в 2000 полуфабрикатов завершена, но это возможно не для каждой технологии). Хуже всего дело будет обстоять со складом готовой продукции, т.к. там мы получим катастрофический запас избыточной продукции.

Минимальный размер партии

Минимальный размер партии из всех четырех вариантов — 34 штуки. Согласившись на его использование мы приходим к планированию производства, в котором используются только партии объемом 34 штуки:

  1. 34 штуки в партии
  2. 34 штуки в партии
  3. 34 штуки в партии
  4. 34 штуки в партии

Что при этом получается?

На первом этапе переналадка будет выполняться в 60 раз чаще, чем этого требуется для оптимального варианта. Это очень много. Если каждая переналадка занимает ощутимое время, это может катастрофическим образом сказаться на производительности всего процесса — он просто не будет успевать выпускать всё, что вы хотите от него получить.

Дальше переналадка будет выполняться тоже неоптимально — в 6 раз чаще, чем это требуется для оптимального варианта. Хуже того, если, например, при запуске каждой партии используется дорогостоящая оснастка или материалы, которые расходуются один раз на всю партию, эти расходы существенно возрастут и лягут непомерным грузом на себестоимость продукции.

То же самое будет с третьим этапом, и только на четвертом этапе всё будет так как надо.

В общем случае, весь производственный процесс будет идти медленнее, его будет сдерживать этап с самой длительной переналадкой.

Плюсы данного варианта в том, что вы сводите к минимуму потребности в складских площадях — их нужно только столько, сколько требуется для хранения 3 видов полуфабрикатов по 34 штуки, еще немного — для 34 единиц сырья и 34 единиц готовой продукции. Микроскопическая цифра, по сравнению с предыдущим этапом.

Минусы — возросшие потери оснастки на переналадках и сократившаяся из-за больших потерь времени на переналадку производительность всего процесса в целом.

Давайте оставим всё как есть

Теперь, разобравшись с тем, что происходит в крайних случаях, можно разобраться, а как будет действовать производство, если оставить размеры партий такими, чтобы они были равны экономически оптимальному размеру партии каждого этапа в отдельности:

  1. 2000 штук в партии
  2. 200 штук в партии
  3. 540 штук в партии
  4. 34 штук в партии

Итак, как это будет работать?

Для запуска такого производства нам понадобится 2000 единиц сырья перед первым этапом. Тогда мы сможем выполнить наладку и запустить оптимальную партию в производство и всё будет хорошо.

После этого 2000 полуфабрикатов попадут на промежуточный склад. Из них за первый заход отберут только 200 штук, чтобы начать оптимальным образом второй этап производства. Здесь тоже всё хорошо.

После второго этапа 200 штук лягут в запас и будут ждать следующей партии, поскольку для запуска третьего этапа нужно не меньше 540 штук. И если второй этап будет изготавливать полуфабрикаты того же типа, то потребуется выпустить еще два партии по 200 штук. В этом случае запасы между вторым и третьим этапом достигнут 600 штук и можно будет запустить третий этап производства.

Третий этап производства выдаст 540 полуфабрикатов на последний промежуточный склад и они будут потребляться оттуда небольшими партиями по 34 штуки. В этом случае мы обеспечим минимальные запасы на складе готовой продукции, но всё равно не избавимся от запасов на складе полуфабрикатов между 3 и 4 этапами производства.

Что можно увидеть в этой ситуации?

Размер промежуточного склада пропорционален той из экономически оптимальных партий этих двух этапов, которая больше по количеству.

Т.е. склад полуфабрикатов между первым и вторым этапами производства должен вмещать не менее 2000 изделий. Склад полуфабрикатов между вторым и третьим этапами производства должен вмещать 540, а вовсе не 200 изделий. И склад полуфабрикатов между третьим и четвертым этапами производства тоже должен вмещать 540 изделий. Склад готовой продукции должен вмещать партии в 34 готовых изделия и этого, видимо, в нашем случае будет достаточно.

Интересно, что из этого вытекает первое изменение, которое стоит внести в систему планирования.

Поскольку размер складов у нас больше оптимального (2000, 540, 540 и 34), то нет никакого логического смысла запускать на втором этапе партии по 200 штук, а не по 540 — склад мы всё равно оплачиваем как «на 540» и накапливаем там детали для запуска на следующем этапе по (минимум) 540 штук, поэтому стоит изменить размер экономически оптимальной партии второго этапа с 200 на 540 несмотря на то, что цифру 200 мы получили расчетным путем по вышеприведённой формуле.

В реальности принятие такого решения выглядит так: мастер участка, на котором происходит выполнение второго этапа производства, смотрит на статистику запасов полуфабрикатов на обоих складах и говорит примерно следующее: «а чего мы вообще паримся и всё время переналадки делаем, это же никому не нужно!»

Таким образом, мы плавно переходим к варианту 2:

  1. 2000 штук в партии
  2. 540 штук в партии
  3. 540 штук в партии
  4. 34 штук в партии

И это не самоуправство, это — просто здравый смысл мастера или планировщика, потому что в данном случае работа партиями по 200 штук действительно не нужна ни для чего кроме для соответствия расчётному экономически обоснованному размеру партии. А если это не игровая ситуация, а жизненная, то на расчётные цифры всем наплевать — ведь очевидно, что в данном случае в расчёте не учли особенностей всего процесса целиком.

Чтобы продемонстрировать это подход другим примером, давайте предположим, что производство состоит не из 4, а из 10 этапов, и оптимальные партии для каждого этапа были рассчитаны следующим образом:

  1. 4000 штук
  2. 70 штук
  3. 320 штук
  4. 15 штук
  5. 645 штук
  6. 90 штук
  7. 425 штук
  8. 64 штук
  9. 130 штук
  10. 70 штук

Очевидно, что запасы между этапами должны вмещать не меньше чем:

  • 4000 изделий между первым и вторым этапами
  • 320 изделий между вторым и третьим этапами
  • 320 изделий между третьим и четвертым этапами
  • 645 изделий между четвертым и пятым этапами
  • 645 изделий между пятым и шестым этапами
  • 425 изделий между шестым и седьмым этапами
  • 425 изделий между седьмым и восьмым этапами
  • 130 изделий между восьмым и девятым этапами
  • 130 изделий между девятым и десятым этапами

Поразмышляв немного над оптимальными размерами партий можно прийти к выводу, что с тем же успехом можно выставить размеры партий следующим образом:

  1. 4000 изделий
  2. 320 изделий
  3. 320 изделий
  4. 645 изделий
  5. 645 изделий
  6. 425 изделий
  7. 425 изделий
  8. 130 изделий
  9. 130 изделий
  10. 70 изделий

Теперь становится понятным, что между третьим и четвертым этапами нужен буфер в 645 изделий, а потом окажется, что такой же буфер на самом деле нужен и между вторым и третьим этапами производства. В итоге оптимальные размеры производственных партий по этапам будут составлять следующую последовательность:

  1. 4000 изделий
  2. 645 изделий
  3. 645 изделий
  4. 645 изделий
  5. 645 изделий
  6. 425 изделий
  7. 425 изделий
  8. 130 изделий
  9. 130 изделий
  10. 70 изделий

Т.е. в стабильном состоянии любой набор партий на этапах производства стремится к такому набору, когда на следующем этапе размер партии равен или меньше размера партии предыдущего этапа.

Давайте назовем это парадоксом «домашних консервных заготовок»: сначала мы собираем весь урожай, какой можем, и закатываем его по банкам, затем, по праздникам, достаем из запасов банку огурцов, открываем ее, и несколько дней поспешно доедаем открытую банку огурцов, чтобы они не испортились — на каждом этапе «потребления» урожая огурцов размер партии всё меньше и меньше, пока он не достигнет размера партий, которыми забирает продукцию потребитель.

Если бы у нас первоначально размеры партий составляли бы такую последовательность:

  1. 34 штуки
  2. 540 штук
  3. 200 штук
  4. 2000 штук,

то вполне разумно ожидать, что спустя какое-то время набор размеров партий пришел бы к варианту

  1. 2000 штук
  2. 2000 штук
  3. 2000 штук
  4. 2000 штук,

поскольку нет никакой необходимости 10 раз перенастраивать оборудование третьего этапа производства, чтобы запустить одну партию в 2000 одинаковых изделий на четвертом этапе.

Предупреждение о условиях, которые остались «за текстом»

Все эти расклады даны для одного типа изделий без учета других типов изделий — мы просто имеем в виду, что переналадка производится для изготовления «другого» типа продукции.

Парадокс «домашних консервных заготовок» в чистом виде можно увидеть только на том производстве, где производственных и складских площадей достаточно для хранения всех этих разрастающихся запасов. В противном случае они будут ограничиваться физическими масштабами производства, однако при этом суть парадокса будет такой же: размеры партий на предшествующих этапах будут увеличиваться до тех пор, пока не будет достигнут предел занимаемого запасами пространства, либо пока этот самый размер партий не достигнет размера партий последующих этапов.

Важный вывод о предельном оптимальном размере партии

Размер партий на каждом этапе производства будет не меньше размеров партий последнего этапа производства или последнего этапа транспортировки продукции заказчику.

Т.е. если вы отгружаете клиенту зубные велосипедные насосы сорокафутовыми контейнерами, нет никакого смысла производить их партиями по 10 штук, а не по 50 или по 1000 — в конечном итоге вам всё равно нужен будет полный контейнер насосов.

Расчет минимально допустимого размера партии

В логике бережливого производства одной из целью планирования производства является снижение размера партии вплоть до достижения идеального состояния, которое описывается понятием «поток единичных изделий» — One Piece Flow.

Если расчет экономически оптимального размера партий делается в рамках общепринятой логики управления, когда определенные размеры запасов являются благом, а не злом, то в бережливом производстве, когда любые запасы считаются в той или иной степени вредными, вопрос оптимального размера партий ставится немного иначе: насколько маленькими могут быть партии производства при условии сохранения необходимого уровня производительности производства?

Вот расчет.

Предположим, нам надо изготовить за время T определенное количество n изделий или полуфабрикатов. Среднее время цикла составляет CT. В этом случае время, которое мы можем потратить на переналадки будет равно

Tcho = (T — n x CT)

Если одна переналадка занимает примерно время величиной ChT, то мы можем позволить себе определенное количество переналадок за этот период времени:

Ncho = (T — n x CT) / ChT

И тогда среднее количество изделий в партии будет равно:

Batch = n / Ncho = n x ChT / (T — n x CT)

Для максимума выполняемых за определенный период времени переналадок это будет минимум изделий на одну партию, при котором производство еще успевает выполнить свой план.

Вот пример.

Длительность смены = 8 часов или 480 минут

Время цикла = 1 минута / изделие

Плановый выпуск 400 изделий

Длительность переналадки 5 минут

Batch = 450 x 5 / (480 — 400 x 1) = 450 x 5 / 80 = 29 изделий (округляем вверх)

Для надежности стоит ввести коэффициент доступности оборудования, чтобы учесть время на обслуживание и ремонт.

Тогда формула будет выглядеть так:

Batch = n x ChT / (T x k — n x CT)

в этом случае, если в наш пример добавить коэффициент доступности 90%, то размер партии будет равен:

Batch = 450 x 5 / (480 x 0,9 — 400 x 1) = 450 x 5 / (432 — 400) = 450 x 5 / 32 = 71 изделий.

Вот несколько следствий из этой формулы:

  • Чем больше плановый выпуск, тем меньше можно сделать переналадок и тем больший размер партий нужно применять.
  • Чем меньше коэффициент доступности, тем меньше переналадок и тем больше размер партий.
  • Чем больше время переналадки, тем меньше переналадок и тем больше размер партий
  • Чем меньше время переналадки, тем больше можно сделать переналадок и тем меньший размер партий можно использовать.

В данной формуле сделаны два упрощения с учетом следующих предположений.