Финансы. Налоги. Льготы. Налоговые вычеты. Госпошлина

Как выглядит современная угольная электростанция. Краткая характеристика работы тепловой электростанции Принцип работы тэс на угле

Современный мир требует огромного количества энергии (электрической и тепловой), которая производится на электростанциях различного типа.

Человек научился добывать энергию из нескольких источников (углеводородное топливо, ядерные ресурсы, падающая вода, ветер и т.д.) Однако и по сей день наиболее востребованными и эффективными остаются тепловые и атомные электростанции, о которых и пойдет речь.

Что такое АЭС?

Атомная электростанция (АЭС) – это объект, на котором для производства энергии используется реакция распада ядерного топлива.

Попытки использования управляемой (то есть контролируемой, прогнозируемой) ядерной реакции для выработки электроэнергии были предприняты советскими и американскими учеными одновременно – в 40-х годах прошлого века. В 50-х годах «мирный атом» стал реальностью, и во многих странах мира стали строить АЭС.

Центральным узлом любой АЭС является ядерная установка, в которой происходит реакция. При распаде радиоактивных веществ происходит выделение огромного количества тепла. Выделяемая тепловая энергия используется для нагрева теплоносителя (как правило, воды), который, в свою очередь, нагревает воду второго контура до перехода ее в пар. Горячий пар вращает турбины, благодаря чему происходит образование электроэнергии.

В мире не утихают споры о целесообразности использования атомной энергии для выработки электричества. Сторонники АЭС говорят об их высокой продуктивности, безопасности реакторов последнего поколения, а также о том, что такие электростанции не загрязняют окружающую среду. Противники утверждают, что АЭС потенциально чрезвычайно опасны, а их эксплуатация и, особенно, утилизация отработанного топлива сопряжены с огромными расходами.

Что такое ТЭС?

Наиболее традиционным и распространенным в мире видом электростанциЙ являются ТЭС. Тепловые электростанции (так расшифровывается данная аббревиатура) вырабатывают электроэнергию за счет сжигания углеводородного топлива – газа, угля, мазута.


Схема работы ТЭС выглядит следующим образом: при сгорании топлива образуется большое количество тепловой энергии, с помощью которой нагревается вода. Вода превращается в перегретый пар, который подается в турбогенератор. Вращаясь, турбины приводят в движение детали электрогенератора, образуется электрическая энергия.

На некоторых ТЭЦ фаза передачи тепла теплоносителю (воде) отсутствует. В них используются газотурбинные установки, в которых турбину вращают газы, полученные непосредственно при сжигании топлива.

Существенным преимуществом ТЭС считается доступность и относительная дешевизна топлива. Однако есть у тепловых станций и недостатки. Это, прежде всего, угроза окружающей среде. При сжигании топлива в атмосферу выбрасывается большое количество вредных веществ. Чтобы сделать ТЭС более безопасными, применяется ряд методов, в том числе: обогащение топлива, установка специальных фильтров, задерживающих вредные соединения, использование рециркуляции дымовых газов и т.п.

Что такое ТЭЦ?

Само название данного объекта напоминает предыдущее, и на самом деле, ТЭЦ, как и тепловые электростанции преобразуют тепловую энергию сжигаемого топлива. Но помимо электроэнергии теплоэлектроцентрали (так расшифровывается ТЭЦ) поставляют потребителям тепло. ТЭЦ особенно актуальны в холодных климатических зонах, где нужно обеспечить жилые дома и производственные здания теплом. Именно поэтому ТЭЦ так много в России, где традиционно используется центральное отопление и водоснабжение городов.

По принципу работы ТЭЦ относятся к конденсационным электростанциям, но в отличие от них, на теплоэлектроцентралях часть выработанной тепловой энергии идет на производство электричества, а другая часть – на нагрев теплоносителя, который и поступает к потребителю.


ТЭЦ более эффективна по сравнению с обычными ТЭС, поскольку позволяет использовать полученную энергию по максимуму. Ведь после вращения электрогенератора пар остается горячим, и эту энергию можно использовать для отопления.

Помимо тепловых, существуют атомные ТЭЦ, которые в перспективе должны сыграть ведущую роль в электро- и теплоснабжении северных городов.

Согласно общепринятому определению, тепловые электростанции – это электростанции, вырабатывающие электроэнергию посредством преобразования химической энергии топлива в механическую энергию вращения вала электрогенератора.

Первые ТЭС появились еще в конце XIX века в Нью-Йорке (1882 год), а в 1883 году первая тепловая электростанция была построена в России (С.Петербург). С момента своего появление, именно ТЭС получили наибольшее распространение, учитывая все увеличивающуюся энергетическую потребность наступившего техногенного века. Вплоть до середины 70-х годов прошлого века, именно эксплуатация ТЭС являлась доминирующим способом получения электроэнергии. К примеру, в США и СССР доля ТЭС среди всей получаемой электроэнергии составляла 80%, а во всем мире – порядка 73-75%.

Данное выше определение хоть и емкое, но не всегда понятное. Попытаемся своими словами объяснить общий принцип работы тепловых электростанций любого типа.

Выработка электричества в ТЭС происходить при участии множества последовательных этапов, но общий принцип её работы очень прост. Вначале топливо сжигается в специальной камере сгорания (паровом котле), при этом выделяется большое количество тепла, которое превращает воду, циркулирующую по специальным системам труб расположенным внутри котла, в пар. Постоянно нарастающее давление пара вращает ротор турбины, которая передает энергию вращения на вал генератора, и в результате вырабатывается электрический ток.

Система пар/вода замкнута. Пар, после прохождения через турбину, конденсируется и вновь превращается в воду, которая дополнительно проходит через систему подогревателей и вновь попадает в паровой котел.

Существует несколько типов тепловых электростанций. В настоящее время, среди ТЭС больше всего тепловых паротурбинных электростанций (ТПЭС) . В электростанциях такого типа, тепловая энергия сжигаемого топлива используется в парогенераторе, где достигается очень высокое давление водяного пара, приводящего в движение ротор турбины и, соответственно, генератор. В качестве топлива, на таких теплоэлектростанциях используется мазут или дизель, а также природный газ, уголь, торф, сланцы, иными словами все виды топлива. КПД ТПЭС составляет около 40 %, а их мощность может достигать 3-6 ГВт.

ГРЭС (государственная районная электрическая станция) – довольно известное и привычное название. Это не что иное, как тепловая паротурбинная электростанция, оборудованная специальными конденсационными турбинами, которые не утилизируют энергию отработанных газов и не превращают её в тепло, например, для обогрева зданий. Такие электростанции еще называют конденсационными электростанциями.

В том же случае, если ТПЭС оснащены специальными теплофикационными турбинами, преобразующих вторичную энергию отработанного пара в тепловую энергию, используемую для нужд коммунальных или промышленных служб, то это уже теплоэлектроцентрали или ТЭЦ. К примеру, в СССР на долю ГРЭС приходилось около 65% вырабатываемой паротурбинными электростанциями электроэнергии, и, соответственно, 35% - на долю ТЭЦ.

Существуют также иные виды тепловых электростанций. В газотурбинных электростанциях, или ГТЭС, генератор вращается посредством газовой турбины. В качестве топлива на таких ТЭС применяют природный газ или жидкое топливо (дизель, мазут). Однако КПД таких электростанций не очень высок, около 27-29%, так что их используют в основном как резервные источники электроэнергии для покрытия пиков нагрузки на электрическую сеть, или для снабжения электричеством небольших населенных пунктов.

Тепловые электростанции с парогазотурбинной установкой (ПГЭС) . Это электростанции комбинированного типа. Они оборудованы паротурбинными и газотурбинными механизмами, и их КПД достигает 41-44%. Эти электростанции также позволяют утилизировать тепло и превращать его в тепловую энергию, идущую на отопление зданий.

Главным недостатком всех тепловых электростанций является тип используемого топлива. Все виды топлива, которые применяют на ТЭС, являются невосполнимыми природными ресурсами, которые медленно, но неуклонно заканчиваются. Именно поэтому в настоящее время, наряду с использованием атомных электростанций, ведутся разработки механизма выработки электроэнергии при помощи восполняемых или других альтернативных источников энергии.

В1879 г., когда Томас Алва Эдисон изобрел лампу накаливания, началась эра электрификации. Для производства больших количеств электроэнергии требовалось дешевое и легкодоступное топливо. Этим требованиям удовлетворял каменный уголь, и первые электростанции (построенные в конце XIX в. самим Эдисоном) работали на угле.

По мере того как в стране строилось все больше и больше станций, зависимость от угля возрастала. Начиная с первой мировой войны примерно половина ежегодного производства электроэнергии в США приходилась на тепловые электростанции, работающие на каменном угле. В 1986 г. общая установленная мощность таких электростанций составила 289000 МВт, и они потребляли 75% всего количества (900 млн. т) добываемого в стране угля. Учитывая существующие неопределенности в отношении перспектив развития ядерной энергетики и роста добычи нефти и природного газа, можно предположить, что к концу века тепловые станции на угольном топливе будут производить до 70% всей вырабатываемой в стране электроэнергии.

Однако, несмотря на то что уголь долгое время был и еще многие годы будет основным источником получения электроэнергии (в США на его долю приходится около 80% запасов всех видов природных топлив), он никогда не был оптимальным топливом для электростанций. Удельное содержание энергии на единицу веса (т. е. теплотворная способность) у угля ниже, чем у нефти или природного газа. Его труднее транспортировать, и, кроме того, сжигание угля вызывает целый ряд нежелательных экологических последствий, в частности выпадение кислотных дождей. С конца 60-х годов привлекательность тепловых станций на угле резко пошла на убыль в связи с ужесточением требований к загрязнению среды газообразными и твердыми выбросами в виде золы и шлаков. Расходы на решение этих экологических проблем наряду с возрастающей стоимостью строительства таких сложных объектов, какими являются тепловые электростанции, сделали менее благоприятными перспективы их развития с чисто экономической точки зрения.

Однако, если изменить технологическую базу тепловых станций на угольном топливе, их былая привлекательность может возродиться. Некоторые из этих изменений носят эволюционный характер и нацелены главным образом на увеличение мощности существующих установок. Вместе с тем разрабатываются совершенно новые процессы безотходного сжигания угля, т. е. с минимальным ущербом для окружающей среды. Внедрение новых технологических процессов направлено на то, чтобы будущие тепловые электростанции на угольном топливе поддавались эффективному контролю на степень загрязнения ими окружающей среды, обладали гибкостью с точки зрения возможности использования различных видов угля и не требовали больших сроков строительства.

Для того чтобы оценить значение достижений в технологии сжигания угля, рассмотрим кратко работу обычной тепловой электростанции на угольном топливе. Уголь сжигается в топке парового котла, представляющего собой огромную камеру с трубами внутри, в которых вода превращается в пар. Перед подачей в топку уголь измельчается в пыль, за счет чего достигается почти такая же полнота сгорания, как и при сжигании горючих газов. Крупный паровой котел потребляет ежечасно в среднем 500 т пылевидного угля и генерирует 2,9 млн. кг пара, что достаточно для производства 1 млн. квт-ч электрической энергии. За то же время котел выбрасывает в атмосферу около 100000 м3 газов.
Генерированный пар проходит через пароперегреватель, где его темпе¬ратура и давление увеличиваются, и затем поступает в турбину высокого давления. Механическая энергия вращения турбины преобразуется электрогенератором в электрическую энергию. Для того чтобы получить более высокий кпд преобразования энергии, пар из турбины обычно возвращается в котел для вторичного перегрева и затем приводит в движение одну или две турбины низкого давления и только после этого конденсируется путем охлаждения; конденсат возвращается в цикл котла.

Оборудование тепловой электростанции включает механизмы топливоподачи, котлы, турбины, генераторы, а также сложные системы охлаждения, очистки дымовых газов и удаления золы. Все эти основные и вспомогательные системы рассчитываются так, чтобы работать с высокой надежностью в течение 40 или более лет при нагрузках, которые могут меняться от 20% установленной мощности станции до максимальной. Капитальные затраты на оборудование типичной тепловой электростанции мощностью 1000 МВт, как правило, превышают 1 млрд. долл.

Эффективность, с которой тепло, освобожденное при сжигании угля, может быть превращено в электричество, до 1900 г. составляла лишь 5%, но к 1967 г. достигла 40%. Другими словами, за период около 70 лет удельное потребление угля на единицу производимой электрической энергии сократилось в восемь раз. Соответственно происходило и снижение стоимости 1 кВт установленной мощности тепловых электростанций: если в 1920 г. она составляла 350 долл. (в ценах 1967 г.), то в 1967 г. снизилась до 130 долл. Цена отпускаемой электроэнергии также упала за тот же период с 25 центов до 2 центов за 1 кВт-чае.

Однако начиная с 60-х годов темпы прогресса стали падать. Эта тенденция, по-видимому, объясняется тем, что традиционные тепловые электростанции достигли предела своего совершенства, определяемого законами термодинамики и свойствами материалов, из которых изготавливаются котлы и турбины. С начала 70-х годов эти технические факторы усугубились новыми экономическими и организационными причинами. В частности, резко возросли капитальные затраты, темпы роста спроса на электроэнергию замедлились, ужесточились требования к защите окружающей среды от вредных выбросов и удлинились сроки реализации проектов строительства электростанций. В результате стоимость производства электроэнергии из угля, имевшая многолетнюю тенденцию к снижению, резко возросла. Действительно, 1 кВт электроэнергии, производимой новыми тепловыми электростанциями, стоит теперь больше, чем в 1920 г. (в сопоставимых ценах).

В последние 20 лет на стоимость тепловых электростанций на угольном топливе наибольшее влияние оказывали ужесточившиеся требования к удалению газообразных,
жидких и твердых отходов. На системы газоочистки и золоудаления современных тепловых электростанций теперь приходится 40% капитальных затрат и 35% эксплуатационных расходов. С технической и экономической точек зрения наиболее значительным элементом системы контроля выбросов является установка для де-сульфуризации дымовых газов, часто называемая системой мокрого (скрубберного) пылеулавливания. Мокрый пылеуловитель (скруббер) задерживает окислы серы, являющиеся основным загрязняющим веществом, образующимся при сгорании угля.

Идея мокрого пылеулавливания проста, но на практике оказывается трудно осуществимой и дорогостоящей. Щелочное вещество, обычно известь или известняк, смешивается с водой, и раствор распыляется в потоке дымовых газов. Содержащиеся в дымовых газах окислы серы абсорбируются частицами щелочи и выпадают из раствора в виде инертного сульфита или сульфата кальция (гипса). Гипс может быть легко удален или, если он достаточно чист, может найти сбыт как строительный материал. В более сложных и дорогих скрубберных системах гипсовый осадок может превращаться в серную кислоту или элементарную серу - более ценные химические продукты. С 1978 г. установка скрубберов является обязательной на всех строящихся тепловых электростанциях на пылеугольном топливе. В результате этого в энерге¬тической промышленности США сейчас больше скрубберных установок, чем во всем остальном мире.
Стоимость скрубберной системы на новых станциях обычно составляет 150-200 долл. на 1 кВт установленной мощности. Установка скрубберов на действующих станциях, первоначально спроектированных без мокрой газоочистки, обходится на 10-40% дороже, чем на новых станциях. Эксплуатационные расходы на скрубберы довольно высоки независимо от того, установлены они на старых или новых станциях. В скрубберах образуется огромное количество гипсового шлама, который необходимо выдерживать в отстойных прудах или удалять в отвалы, что создает новую экологическую проблему. Например, тепловая электростанция мощностью 1000 МВт, работающая на каменном угле, содержащем 3% серы, производит в год столько шлама, что им можно покрыть площадь в 1 км2 слоем толщиной около 1 м.
Кроме того, системы мокрой газоочистки потребляют много воды (на станции мощностью 1000 МВт расход воды составляет около 3800 л/мин), а их оборудование и трубопроводы часто подвержены засорению и коррозии. Эти факторы увеличивают эксплуатационные расходы и снижают общую надежность систем. Наконец, в скрубберных системах расходуется от 3 до 8% вырабатываемой станцией энергии на привод насосов и дымососов и на подогрев дымовых газов после газоочистки, что необходимо для предотвращения конденсации и коррозии в дымовых трубах.
Широкое распространение скрубберов в американской энергетике не было ни простым, ни дешевым. Первые скрубберные установки были значительно менее надежными, чем остальное оборудование станций, поэтому компоненты скрубберных систем проектировались с большим запасом прочности и надежности. Некоторые из трудностей, связанные с установкой и эксплуатацией скрубберов, могут быть объяснены тем фак том, что промышленное применение технологии скрубберной очистки было начато преждевременно. Только теперь, после 25-летнего опыта, надежность скрубберных систем достигла приемлемого уровня.
 Стоимость тепловых станций на угольном топливе возросла не только из-за обязательного наличия систем контроля выбросов, но также и потому, что стоимость строительства сама по себе резко подскочила вверх. Даже с учетом инфляции удельная стоимость установленной мощности тепловых станций на угольном топливе сейчас в три раза выше, чем в 1970 г. За прошедшие 15 лет «эффект масштаба», т. е. выгода от строительства крупных электростанций, был сведен на нет значительным удорожанием строительства. Частично это удорожание отражает высокую стоимость финансирования долгосрочных объектов капитального строительства.

Какое влияние имеет задержка реализации проекта, можно видеть на примере японских энергетических компаний. Японские фирмы обычно более расторопны, чем их американские коллеги, в решении организационно-технических и финансовых проблем, которые часто задерживают ввод в эксплуатацию крупных строительных объектов. В Японии электростанция может быть построена и пущена в действие за 30-40 месяцев, тогда как в США для станции такой же мощности обычно требуется 50-60 месяцев. При таких больших сроках реализации проектов стоимость новой строящейся станции (и, следовательно, стоимость замороженного капитала) оказывается сравнимой с основным капиталом многих энергетических компаний США.

Поэтому энергетические компании ищут пути снижения стоимости строительства новых электрогенерирующих установок, в частности применяя модульные установки меньшей мощности, которые можно быстро транспортировать и устанавливать на существующей станции для удовлетворения растущей потребности. Такие установки могут быть пущены в эксплуатацию в более короткие сроки и поэтому окупаются быстрее, даже если коэффициент окупаемости капиталовложений остается постоянным. Установка новых модулей только в тех случаях, когда требуется увеличение мощности системы, может дать чистую экономию до 200 долл. на 1 кВт, несмотря на то что при применении маломощных установок теряются выгоды от «эффекта масштаба».
  В качестве альтернативы строительству новых электрогенерирующих объектов энергетические компании также практиковали реконструкцию действующих старых электростанций для улучшения их рабочих характеристик и продления срока службы. Эта стратегия, естественно, требует меньших капитальных затрат, чем строительство новых станций. Такая тенденция оправдывает себя и потому, что электростанции, построенные около 30 лет назад, еще не устарели морально. В некоторых случаях они работают даже с более высоким кпд, так как не оснащены скрубберами. Старые электростанции приобретают все больший удельный вес в энергетике страны. В 1970 г. только 20 электрогенерирующих объектов в США имели возраст более 30 лет. К концу века 30 лет будет средним воз¬растом тепловых электростанций на угольном топливе.

Энергетические компании также ищут пути снижения эксплуатационных расходов на станциях. Для предотвращения потерь энергии необходимо обеспечить своевременное предупреждение об ухудшении рабочих характеристик наиболее важных участков объекта. Поэтому непрерывное наблюдение за состоянием узлов и систем становится важной составной частью эксплуатационной службы. Такой непрерывный контроль естественных процессов износа, коррозии и эрозии позволяет операторам станции принять своевременные меры и предупредить аварийный выход из строя энергетических установок. Значимость таких мер может быть правильно оценена, если учесть, например, что вынужденный простой станции на угольном топливе мощностью 1000 МВт может принести энергетической компании убытки в 1 млн. долл. в день, главным образом потому, что невыработанная энергия должна быть компенсирована путем энергоснабжения из более дорогих источников.

Рост удельных расходов на транспортировку и обработку угля и на шлакоудаление сделал важным фактором и качество угля (определяемое содержанием влаги, серы и других минералов), определяющее рабочие характеристики и экономику тепловых электростанций. Хотя низкосортный уголь может стоить дешевле высокосортного, его расход на производство того же количества электрической энергии значительно больше. Затраты на перевозку большего объема низкосортного угля могут перекрыть выгоду, обусловленную его более низкой ценой. Кроме того, низкосортный уголь дает обычно больше отходов, чем высокосортный, и, следовательно, необходимы большие затраты на шлакоудаление. Наконец, состав низкосортных углей подвержен большим колебаниям, что затрудняет «настройку» топливной системы станции на работу с максимально возможным кпд; в этом случае система должна быть отрегулирована так, чтобы она могла работать на угле наихудшего ожидаемого качества.
  На действующих электростанциях качество угля может быть улучшено или по крайней мере стабилизировано путем удаления перед сжиганием некоторых примесей, например серосодержащих минералов. В очистных установках измельченный «грязный» уголь отделяется от примесей многими способами, использующими различия в удельном весе или других физических характеристиках угля и примесей.

Несмотря на указанные мероприятия по улучшению рабочих характеристик действующих тепловых электростанций на угольном топливе, в США к концу столетия нужно будет ввести в строй дополнительно 150000 МВт энергетических мощностей, если спрос на электроэнергию будет расти с ожидаемым темпом 2,3% в год. Для сохранения конкурентоспособности угля на постоянно расширяющемся энергетическом рынке энергетическим компаниям придется принять на вооружение новые прогрессивные способы сжигания угля, которые являются более эффективными, чем традиционные, в трех ключевых аспектах: меньшее загрязнение окружающей среды, сокращение сроков строительства электростанций и улучшение их рабочих и эксплуатационных характеристик.

  СЖИГАНИЕ УГЛЯ В ПСЕВДООЖИЖЕННОМ СЛОЕ уменьшает потребность во вспомогательных установках по очистке выбросов электростанции.
  Псевдоожиженныи слой смеси угля и известняка создается в топке котла воздушным потоком, в котором твердые частицы перемешиваются и находятся во взвешенном состоянии, т. е. ведут себя так же, как в кипящей жидкости.
  Турбулентное перемешивание обеспечивает полноту сгорания угля; при этом частицы известняка реагируют с окислами серы и улавливают около 90% этих окислов. Поскольку нагревательные грубы котла непосредственно касаются кипящего слоя топлива, генерация пара происходит с большей эффективностью, чем в обычных паровых котлах, работающих на измельченном угле.
  Кроме того, температура горящего угля в кипящем слое ниже, что предотвращает плавление котельного шлака и уменьшает образование окислов азота.
  ГАЗИФИКАЦИЯ УГЛЯ может быть осуществлена нагреванием смеси угля и воды в атмосфере кислорода. Продуктом процесса является газ, состоящий в основном из окиси углерода и водорода. После того как газ будет охлажден, очищен от твердых частиц и освобожден от серы, его мож- но использовать как топливо для газовых турбин, а затем для производства водяного пара для паровой турбины (комбинированный цикл).
  Станция с комбинированным циклом выбрасывает в атмосферу меньше загрязняющих веществ, чем обычная тепловая станция на угле.

В настоящее время разрабатывается более десятка способов сжигания угля с повышенным кпд и меньшим ущербом для окружающей среды. Наиболее перспективными среди них являются сжигание в псевдоожиженном слое и газификация угля. Сжигание по первому способу производится в топке парового котла, которая устроена так, что измельченный уголь в смеси с частицами известняка поддерживается над решеткой топки во взвешенном («псевдо-ожиженном») состоянии мощным восходящим потоком воздуха. Взвешенные частицы ведут себя в сущности так же, как и в кипящей жидкости, т. е. находятся в турбулентном движении, что обеспечивает высокую эффективность процесса горения. Водяные трубы такого котла находятся в непосредственном контакте с «кипящим слоем» горящего топлива, в результате чего большая доля тепла передается теплопроводностью, что значительно более эффективно, чем радиационный и конвективный перенос тепла в обычном паровом котле.

Котел с топкой, где уголь сжигается в псевдоожиженном слое, имеет большую площадь теплопередающих поверхностей труб, чем обычный котел, работающий на измельченном в пыль угле, что позволяет снизить температуру в топке и тем самым уменьшить образование окислов азота. (Если температура в обычном котле может быть выше 1650 °С, то в котле с сжиганием в псевдоожиженном слое она находится в пределах 780-870 °С.) Более того, известняк, примешанный к углю, связывает 90 или более процентов серы, освободившейся из угля при горении, так как более низкая рабочая температура способствует прохождению реакции между серой и известняком с образованием сульфита или сульфата кальция. Таким образом вредные для окружающей среды вещества, образующиеся при сжигании угля, нейтрализуются на месте образования, т. е. в топке.
  Кроме того, котел с сжиганием в псевдоожиженном слое по своему устройству и принципу работы менее чувствителен к колебаниям качества угля. В топке обычного котла, работающего на пылевидном угле, образуется огромное количество расплавленного шлака, который часто забивает теплопередающие поверхности и тем самым снижает кпд и надежность котла. В котле с сжиганием в псевдоожиженном слое уголь сгорает при температуре ниже точки плавления шлака и поэтому проблема засорения поверхностей нагрева шлаком даже не возникает. Такие котлы могут работать на угле более низкого качества, что в некоторых случаях позволяет существенно снизить эксплуатационные расходы.
  Способ сжигания в псевдоожиженном слое легко реализуется в котлах модульной конструкции с небольшой паропроизводительностью. По некоторым оценкам капиталовложения на тепловую электростанцию с компактными котлами, работающими по принципу псевдоожиженного слоя, могут быть на 10-20% ниже капиталовложений на тепловую станцию традиционного типа такой же мощности. Экономия достигается за счет сокращения времени строительства. Кроме того, мощность такой станции можно легко нарастить при увеличении электрической нагрузки, что важно для тех случаев, когда ее рост в будущем заранее неизвестен. Упрощается и проблема планирования, так как такие компактные установки можно быстро смонтировать, как только возникнет необходимость увеличения выработки электроэнергии.
  Котлы со сжиганием в псевдоожиженном слое могут также включаться в схему существующих электростанций, когда необходимо быстро увеличить генерируемую мощность. Например, энергетическая компания Northern States Power переделала один из пылеугольных котлов на станции в шт. Миннесота в котел с псевдоожиженным слоем. Переделка осуществлялась с целью увеличения мощности электростанции на 40%, снижения требований к качеству топива (котел может работать даже на местных отходах), более тщательной очистки выбросов и удлинения срока службы станции до 40 лет.
  За прошедшие 15 лет масштабы применения технологии, используемой на тепловых электростанциях, оснащенных исключительно котлами со сжиганием в псевдоожиженном слое, расширились от мелких экспериментальных и полупромышленных установок до крупных «демонстрационных» станций. Такая станция с общей мощностью 160 МВт строится совместно компаниями Tennessee Valley Authority, Duke Power и Commonwealth of Kentucky; фирма Colorado-Ute Electric Association, Inc. пустила в эксплуатацию электрогенерирующую установку мощностью 110 МВт с котлами со сжиганием в псевдоожиженном слое. В случае успеха этих двух проектов, а также проекта компании Northern States Power, совместного предприятия частного сектора с общим капиталом около 400 млн. долл., экономический риск, связанный с применением котлов со сжиганием в псевдоожиженном слое в энергетической промышленности будет значительно уменьшен.
Другим способом, который, правда, уже существовал в более простом виде еще в середине XIX в., является газификация каменного угля с получением «чисто горящего» газа. Такой газ пригоден для освещения и отопления и широко использовался в США до второй мировой войны, пока не был вытеснен природным газом.
Первоначально газификация угля привлекла внимание энергетических компаний, которые надеялись с помощью этого способа получить сгорающее без отходов топливо и за счет этого избавиться от скрубберной очистки. Теперь стало очевидно, что газификация угля имеет и более важное преимущество: горячие продукты сгорания генераторного газа можно непосредственно использовать для привода газовых турбин. В свою очередь отработанное тепло продуктов сгорания после газовой турбины может быть утилизировано с целью получения пара для привода паровой турбины. Такое совместное использование газовых и паровых турбин, называемое комбинированным циклом, является ныне одним из самых эффективных способов производства электрической энергии.
Газ, полученный газификацией каменного угля и освобожденный от серы и твердых частиц, является прекрасным топливом для газовых турбин и, как и природный газ, сгорает почти без отходов. Высокий кпд комбинированного цикла компенсирует неизбежные потери, связанные с превращением угля в газ. Более того, станция с комбинированным циклом потребляет значительно меньше воды, так как две трети мощности развивает газовая турбина, которая не нуждается в воде в отличие от паровой турбины.
Жизнеспособность электрических станций с комбинированным циклом, работающих на принципе газификации угля, была доказана опытом эксплуатации станции "Cool Water" фир¬мы Southern California Edison. Эта станция мощностью около 100 МВт была введена в эксплуатацию в мае 1984 г. Она может работать на разных сортах угля. Выбросы станции по чистоте не отличаются от выбросов соседней станции, работающей на природном газе. Содержание окислов серы в уходящих газах поддерживается на уровне значительно ниже установленной нормы с помощью вспомогательной системы улавливания серы, которая удаляет почти всю серу, содержащуюся в исходном топливе, и производит чистую серу, используемую в промышленных целях. Образование окислов азота предотвращается добавкой к газу воды перед сжиганием, что снижает температуру горения газа. Более того, остающийся в газогенераторе остаток несгоревшего угля подвергается переплавке и превращается в инертный стекловидный материал, который после охлаждения отвечает требованиям, предъявляемым в штате Калифорния к твердым отходам.
Помимо более высокого кпд и меньшего загрязнения окружающей среды станции с комбинированным циклом имеют еще одно преимущество: они могут сооружаться в несколько очередей, так что установленная мощность наращивается блоками. Такая гибкость строительства уменьшает риск чрезмерных или, наоборот, недостаточных капиталовложений, связанный с неопределенностью роста спроса на электроэнергию. Например, первая очередь установленной мощности может работать на газовых турбинах, а в качестве топлива использовать не уголь, а нефть или природный газ, если текущие цены на эти продукты низки. Затем, по мере роста спроса на электроэнергию, дополнительно вводятся в строй котел-утилизатор и паровая турбина, что увеличит не только мощность, но и кпд станции. Впоследствии, когда спрос на электроэнергию вновь увеличится, на станции можно будет построить установку для газификации угля.
Роль тепловых электростанций на угольном топливе является ключевой темой, когда речь идет о сохранности природных ресурсов, защите окружающей среды и путях развития экономики. Эти аспекты рассматриваемой проблемы не обязательно являются конфликтующими. Опыт применения новых технологических процессов сжигания угля показывает, что они могут успешно и одновременно решать проблемы и охраны окружающей среды, и снижения стоимости электроэнергии. Этот принцип был учтен в совместном американо-канадском докладе о кислотных дождях, опубликованном в прошлом году. Руководствуясь содержащимися в докладе предложениями, конгресс США в настоящее время рассматривает возможность учреждения генеральной национальной инициативы по демонстрации и применению «чистых» процессов сжигания угля. Эта инициатива, которая объединит частный капитал с федеральными капиталовложениями, нацелена на широкое промышленное применение в 90-е годы новых процессов сжигания угля, включая котлы с сжиганием топлива в кипящем слое и газогенераторы. Однако даже при широком применении новых процессов сжигания угля в ближайшем будущем растущий спрос на электроэнергию не сможет быть удовлетворен без целого комплекса согласованных мероприятий по консервации электроэнергии, регулированию ее потребления и повышению производительности существующих тепловых электростанций, работающих на традиционных принципах. Постоянно стоящие на повестке дня экономические и экологические проблемы, вероятно, приведут к появлению совершенно новых технологических разработок, принципиально отличающихся от тех, что были здесь описаны. В перспективе тепловые электростанции на угольном топливе могут превратиться в комплексные предприятия по переработке природных ресурсов. Такие предприятия будут перерабатывать местные виды топлива и другие природные ресурсы и производить электроэнергию, тепло и различные продукты с учетом потребностей местной экономики. Кроме котлов с сжиганием в кипящем слое и установок для газификации угля такие предприятия будут оснащены электронными системами технической диагностики и автоматизированными системами управления и, кроме того, полезно использовать большинство побочных продуктов сжигания угля.

Таким образом, возможности улучшения экономических и экологических факторов производства электроэнергии на базе каменного угля очень широкие. Своевременное использование этих возможностей зависит, однако, от того, сможет ли правительство проводить сбалансированную политику в отношении производства энергии и защиты окружающей среды, которая создала бы необходимые стимулы для электроэнергетической промышленности. Необходимо принять меры к тому, чтобы новые процессы сжигания угля развивались и внедрялись рационально, при сотрудничестве с энергетическими компаниями, а не так, как это было с внедрением скрубберной газоочистки. Все это можно обеспечить, если свести к минимуму затраты и риск путем хорошо продуманного проектирования, испытания и усовершенствования небольших опытных экспериментальных установок с последующим широким промышленным внедрением разрабатываемых систем.

Что такое и каковы же принципы работы ТЭС? Общее определение таких объектов звучит примерно следующим образом - это энергетические установки, которые занимаются переработкой природной энергии в электрическую. Для этих целей также используется топливо природного происхождения.

Принцип работы ТЭС. Краткое описание

На сегодняшний день наибольшее распространение получили именно На таких объектах сжигается которое выделяет тепловую энергию. Задача ТЭС - использовать эту энергию, чтобы получить электрическую.

Принцип работы ТЭС - это выработка не только но и производство тепловой энергии, которая также поставляется потребителям в виде горячей воды, к примеру. Кроме того, эти объекты энергетики вырабатывают около 76% всей электроэнергии. Такое широкое распространение обусловлено тем, что доступность органического топлива для работы станции довольно велико. Второй причиной стало то, что транспортировка топлива от места его добычи к самой станции - это довольно простая и налаженная операция. Принцип работы ТЭС построен так, что имеется возможность использовать отработавшее тепло рабочего тела для вторичной поставки его потребителю.

Разделение станций по типу

Стоит отметить, что тепловые станции могут делиться на типы в зависимости от того, какой именно они производят. Если принцип работы ТЭС заключается лишь в производстве электрической энергии (то есть тепловая энергия не поставляет потребителю), то ее называют конденсационной (КЭС).

Объекты, предназначенные для производства электрической энергии, для отпуска пара, а также поставки горячей воды потребителю, имеют вместо конденсационных турбин паровые. Также в таких элементах станции имеется промежуточный отбор пара или же устройство противодавления. Главным преимуществом и принципом работы ТЭС (ТЭЦ) такого типа стало то, что отработанный пар также используется в качестве источника тепла и поставляется потребителям. Таким образом, удается сократить потерю тепла и количество охлаждающей воды.

Основные принципы работы ТЭС

Прежде чем перейти к рассмотрению самого принципа работы, необходимо понять, о какой именно станции идет речь. Стандартное устройство таких объектов включает в себя такую систему, как промежуточный перегрев пара. Она необходима потому, что тепловая экономичность схемы с наличием промежуточного перегрева, будет выше, чем в системе, где она отсутствует. Если говорить простыми словами, принцип работы ТЭС, имеющей такую схему, будет гораздо эффективнее при одних и тех же начальных и конечных заданных параметрах, чем без нее. Из всего этого можно сделать вывод, что основа работы станции - это органическое топливо и нагретый воздух.

Схема работы

Принцип работы ТЭС построен следующим образом. Топливный материал, а также окислитель, роль которого чаще всего берет на себя подогретый воздух, непрерывным потоком подаются в топку котла. В роли топлива могут выступать такие вещества, как уголь, нефть, мазут, газ, сланцы, торф. Если говорить о наиболее распространенном топливе на территории Российской Федерации, то это угольная пыль. Далее принцип работы ТЭС строится таким образом, что тепло, которое образуется за счет сжигания топлива, нагревает воду, находящуюся в паровом котле. В результате нагрева происходит преобразование жидкости в насыщенный пар, который по пароотводу поступает в паровую турбину. Основное предназначение этого устройства на станции заключается в том, чтобы преобразовать энергию поступившего пара, в механическую.

Все элементы турбины, способные двигаться, тесно связываются с валом, вследствие чего они вращаются, как единый механизм. Чтобы заставить вращаться вал, в паровой турбине осуществляется передача кинетической энергии пара ротору.

Механическая часть работы станции

Устройство и принцип работы ТЭС в ее механической части связан с работой ротора. Пар, который поступает из турбины, имеет очень высокое давление и температуру. Из-за этого создается высокая внутренняя энергия пара, которая и поступает из котла в сопла турбины. Струи пара, проходя через сопло непрерывным потоком, с высокой скоростью, которая чаще всего даже выше звуковой, воздействуют на рабочие лопатки турбины. Эти элементы жестко закреплены на диске, который, в свою очередь, тесно связан с валом. В этот момент времени происходит преобразование механической энергии пара в механическую энергию турбин ротора. Если говорить точнее о принципе работы ТЭС, то механическое воздействие влияет на ротор турбогенератора. Это из-за того, что вал обычного ротора и генератора тесно связываются между собой. А далее происходит довольно известный, простой и понятный процесс преобразования механической энергии в электрическую в таком устройстве, как генератор.

Движение пара после ротора

После того как водяной пар проходит турбину, его давление и температура значительно опускаются, и он поступает в следующую часть станции - конденсатор. Внутри этого элемента происходит обратное превращение пара в жидкость. Для выполнения этой задачи внутри конденсатора имеется охлаждающая вода, которая поступает туда посредством труб, проходящих внутри стен устройства. После обратного преобразования пара в воду, она откачивается конденсатным насосом и поступает в следующий отсек - деаэратор. Также важно отметить, что откачиваемая вода, проходит сквозь регенеративные подогреватели.

Основная задача деаэратора - это удаление газов из поступающей воды. Одновременно с операцией очистки, осуществляется и подогрев жидкости так же, как и в регенеративных подогревателях. Для этой цели используется тепло пара, которое отбирается из того, что следует в турбину. Основное предназначение операции деаэрации состоит в том, чтобы понизить содержание кислорода и углекислого газа в жидкости до допустимых значений. Это помогает снизить скорость влияние коррозии на тракты, по которым идет поставка воды и пара.

Станции на угле

Наблюдается высокая зависимость принципа работы ТЭС от вида топлива, которое используется. С технологической точки зрения наиболее сложным в реализации веществом является уголь. Несмотря на это, сырье является основным источником питания на таких объектах, число которых примерно 30% от общей доли станций. К тому же планируется увеличивать количество таких объектов. Также стоит отметить, что количество функциональных отсеков, необходимых для работы станции, гораздо больше, чем у других видов.

Как работают ТЭС на угольном топливе

Для того чтобы станция работала непрерывно, по железнодорожным путям постоянно привозят уголь, который разгружается при помощи специальных разгрузочных устройств. Далее имеются такие элементы, как по которым разгруженный уголь подается на склад. Далее топливо поступает в дробильную установку. При необходимости есть возможность миновать процесс поставки угля на склад, и передавать его сразу к дробилкам с разгрузочных устройств. После прохождения этого этапа раздробленное сырье поступает в бункер сырого угля. Следующий шаг - это поставка материала через питатели в пылеугольные мельницы. Далее угольная пыль, используя пневматический способ транспортировки, подается в бункер угольной пыли. Проходя этот путь, вещество минует такие элементы, как сепаратор и циклон, а из бункера уже поступает через питатели непосредственно к горелкам. Воздух, проходящий сквозь циклон, засасывается мельничным вентилятором, после чего подается в топочную камеру котла.

Далее движение газа выглядит примерно следующим образом. Летучее вещество, образовавшееся в камере топочного котла, проходит последовательно такие устройства, как газоходы котельной установки, далее, если используется система промежуточного перегрева пара, газ подается в первичный и вторичный пароперегреватель. В этом отсеке, а также в водяном экономайзере газ отдает свое тепло на разогрев рабочего тела. Далее установлен элемент, называющийся воздухоперегревателем. Здесь тепловая энергия газа используется для подогрева поступающего воздуха. После прохождения всех этих элементов, летучее вещество переходит в золоуловитель, где очищается от золы. После этого дымовые насосы вытягивают газ наружу и выбрасывают его в атмосферу, использую для этого газовую трубу.

ТЭС и АЭС

Довольно часто возникает вопрос о том, что общего между тепловыми и и есть ли сходство в принципах работы ТЭС и АЭС.

Если говорить об их сходстве, то их несколько. Во-первых, обе они построены таким образом, что для своей работы используют природный ресурс, являющийся ископаемым и иссекаемым. Кроме этого, можно отметить, что оба объекта направлены на то, чтобы вырабатывать не только электрическую энергию, но и тепловую. Сходства в принципах работы также заключаются и в том, что ТЭС и АЭС имеют турбины и парогенераторы, участвующие в процессе работы. Далее имеются лишь некоторые отличие. К ним можно отнести то, что, к примеру, стоимость строительства и электроэнергии, полученной от ТЭС гораздо ниже, чем от АЭС. Но, с другой стороны, атомные станции не загрязняют атмосферу до тех пор, пока отходы утилизируются правильным образом и не происходит аварий. В то время как ТЭС из-за своего принципа работы постоянно выбрасывают в атмосферу вредные вещества.

Здесь кроется и главное отличие в работе АЭС и ТЭС. Если в тепловых объектах тепловая энергия от сжигания топлива передается чаще всего воде или преобразуется в пар, то на атомных станциях энергию берут от деления атомов урана. Полученная энергия расходится для нагрева самых разных веществ и вода здесь используется довольно редко. К тому же все вещества находятся в закрытых герметичных контурах.

Теплофикация

На некоторых ТЭС в их схемах может быть предусмотрена такая система, которая занимается теплофикацией самой электростанции, а также прилегающего поселка, если таковой имеется. К сетевым подогревателям этой установки, пар отбирается от турбины, а также имеется специальная линия для отвода конденсата. Вода подводится и отводится по специальной системе трубопровода. Та электрическая энергия, которая будет вырабатываться таким образом, отводится от электрического генератора и передается потребителю, проходя через повышающие трансформаторы.

Основное оборудование

Если говорить об основных элементах, эксплуатирующихся на тепловых электрических станциях, то это котельные, а также турбинные установки в паре с электрическим генератором и конденсатором. Основным отличием основного оборудования от дополнительного стало то, что оно имеет стандартные параметры по своей мощности, производительности, по параметрам пара, а также по напряжению и силе тока и т. д. Также можно отметить, что тип и количество основных элементов выбираются в зависимости от того, какую мощность необходимо получить от одной ТЭС, а также от режима ее эксплуатации. Анимация принципа работы ТЭС может помочь разобраться в этом вопросе более детально.

), но все они используют 3-4 вида топлива. Это природный газ, уголь (каменный и бурый), мазут и торф. Самые распространенные виды топлива — это газ и уголь.

Пожалуй, начнём с угля. Уголь известен человечеству с давних времён. Им люди отапливают свои жилища очень давно. Это связано, прежде всего с доступностью самого топлива — некоторые залежи угля становятся доступны буквально сняв 2-3 метра верхнего слоя земли. Также давнее применение угля в качестве топлива связано ещё с тем, что его легко можно хранить. Не нужно каких-то хитрых приспособлений и построек, достаточно сложить его в кучу.

В промышленности уголь активно начали использовать с конца 18 века. Со становлением железнодорожного транспорта уголь начали использовать и там. На любом производстве важно иметь балкон, с которого будет обзор на предприятие. Балкон под ключ.

Первые электростанции, работающие на угле, начали строить с конца 19 века и до сих пор уголь на ТЭС активно используется.

На первых ТЭС уголь сжигался в котлах на колосниковых решетках. Сначала кочегары лопатами закидывали уголь в топку, шлак удаляли тоже вручную. Затем появились механизированные колосниковые решетки. На них уголь ссыпался с верху из бункера, решетка двигалась и шлак падал с другого конца в приемник шлака. Это значительно облегчило труд кочегаров.

Электростанции, работающие на газу.

Газ — это топливо, которое также как и уголь, сильно распространено на ТЭС. У газа, по сравнению с углем, есть свои преимущества.

Во-первых, сжигая газ, мы получаем меньше вредных выбросов. Практически отсутствует такие составляющие как зола и шлак.

Во-вторых, упрощается эксплуатация ТЭС, так как отпадает такая работа, как пылеприготовление. Кроме установок пылеприготовления, на . Газ практически не нужно подготавливать к сжиганию. Также ТЭС, которая работает на газу, несколько маневренней, чем ТЭС, работающая на угле в плане изменения нагрузки.

По поводу эффективности можно сказать, что современные ТЭС работающие по циклу ПГУ (паро-газовая установка) могут работать только на газу. В ПГУ установлена , и именно в ней происходит сжигание топлива, а не в котле, как на старых электростанциях. Угольную пыль там сжечь невозможно. Хотя стоит сказать, что в настоящее время из угля можно получит синтетический газ, на котором уже могут работать некоторые зарубежные образцы газовых турбин.

Мазут, торф, дизель и другие виды топлива на ТЭС.

В середине двадцатого века на некоторых ТЭС активно использовался мазут в качестве топлива. В настоящее время мазут в качестве основного топлива не используется из-за его дороговизны. Но мазут продолжают использовать в качестве растопочного топлива на угольных электростанциях. По своим эксплуатационным свойствам мазут близок к природному газу. Стоит заметить, что при сжигании мазута выделяется много оксида серы, так как в нем большое содержание серы.

Также, в прошлом веке на некоторых ТЭС применялся в качестве топлива торф. Но из-за эксплуатационных особенностей и из-за экономической невыгодности сейчас его практически не используют.


Дизельное топливо используют только там, где не требуется производство большого количества электричества. Например, на северных и островных территориях нашей страны. Или там, где требуется временный источник электроснабжения. Дизель, как и мазут, сейчас дорог.

Вы также можете ознакомиться с полным России.